Multi-Channel-Based Differential Pathlength Factor Estimation for Continuous-Wave fNIRS

نویسندگان

چکیده

Functional near-infrared spectroscopy (fNIRS) in brain imaging needs to be robust subject-wise variability. The use of a fixed differential pathlength factor (DPF) per wavelength for the entire will degrade accuracy hemodynamic responses. Since tissue composition varies within brain, correct DPF values should used various emitter-detector distances and regions. In this article, estimation method combining state-space model modified Beer-Lambert law (mBLL), parameter estimating reduced scattering coefficients, dual square-root cubature Kalman filters (SCKFs) is proposed. To validate proposed method, known light intensities (six channels, two wavelengths) reference DPFs are generated using NIRFAST (a Matlab toolbox) presumed paradigm, properties, Balloon model, finite element head consisting 58,818 mesh elements. Then, estimated Jacobian matrix from mBLL. results show that concentration changes correlate well with data. Also, showed relative errors less than 1.33% maximum 0.75% on average. A one-tailed $t$ -test revealed matched more 99.9% confidence. developed can efficiently access actual even if vary significantly properties not uniform. With models SCKFs, real-time one experiment another has become plausible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

channel estimation for mimo-ofdm systems

تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با ‏خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز ‏الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی ‏محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...

Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system

‎Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems‎. ‎In this paper‎, ‎we propose a semi-blind downlink channel estimation method for massive MIMO system‎. ‎We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...

متن کامل

Training-based channel estimation for continuous flat fading BLAST

The Bell Labs Layered Space-Time (BLAST) architecture provides high capacity wireless communications in rich scattering environments. Training sequences are transmitted periodically to estimate the channel. We compare the performance without channel tracking to the performance with interpolation-based channel tracking. The optimal training interval, training length and the maximum throughput ar...

متن کامل

A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements

Functional near-infrared spectroscopy (fNIRS) uses near-infrared light to measure cortical concentration changes in oxygenated (HbO) and deoxygenated hemoglobin (HbR) held to be correlated with cognitive activity. Providing a parametric depiction of such changes in the classic form of stimulus-evoked hemodynamic responses (HRs) can be attained with this technique only by solving two problems. O...

متن کامل

Uplink Channel Estimation for Multi-user OFDM-based Systems

In this paper we propose a simple, yet flexible and efficient, channel estimator for the uplink in broadband Orthogonal Frequency Division Multiplexing (OFDM) systems. The processing is performed in the time-domain, by extracting the channel’s impulse response (CIR) for each user from a joint training signal. In this OFDM system, the pilot sequence we advocate, where all users share the same pi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3063120